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HOMOGENEOUS SINGULAR VORTEX

UDC 533; 517.958A. A. Cherevko and A. P. Chupakhin

An analytical description is given to the spherical partially invariant solution of the gas-dynamics
equations in the case of additional symmetry — the homogeneous singular vortex. The solution was
specified by a generalized potential — an auxiliary function satisfying the inhomogeneous Schwarz
equation. It is proved that the part of the factor system of the homogeneous singular vortex in a
Lagrangian representation that describes the kinematics of a gas particle is a system of linear equa-
tions with the potential defined by the solution of the Schwarz equation. For particular values of the
adiabatic exponent equal to 1, 4/3, and 5/3, the solution of the Schwarz equation is written in terms
of lower-order equations. The isothermal gas flow in the homogeneous singular vortex is described. It
is shown that a periodic geometrical trajectory configuration can exist but the gas density in this case
has a singularity. A physically definite solution exists on time intervals that do not contain singu-
larity points. Examples of motion obtained by implementation of analytical formulas on a computer
are given.

Key words: spherically partially invariant solutions, homogeneous singular vortex, Schwarz equa-
tion, periodic configurations.

Introduction. Exact solutions in fluid dynamics generated by a rotation group are of great interest by
virtue of their high symmetry. The classical spherically symmetric solutions and their applications to the solution
of concrete gas-dynamic problems are described in many papers (see, e.g., [1–3]).

Ovsyannikov [4] found a new class of solutions generated by the rotation group SO(3) and called it the
singular vortex (SV). These solutions belong to the regular partially invariant solutions (RPIS) of the equations of
gas dynamics (or hydrodynamics). Part of the functions, namely, the radial velocity component and the modulus of
the tangential velocity component and all thermodynamic parameters (pressure, density, and entropy) are spherically
symmetric; i.e., they are invariants of the rotation group in the space of independent variables and velocities R6(x,u).
However, in contrast to the spherically symmetric solutions, the velocity has a nonzero tangential component and
the angle of its deflection from the meridian – the quantity ω = ω(t, r, θ, ϕ) is a function of all independent variables.
In the language of the group analysis of differential equations, ω is called a superfluous function [5]. Thus, the SV is
a RPIS of defect 1 and rank 2; the invariant independent variables are time t and the modulus of the radius vector
r =

√
x2 + y2 + z2. Ovsyannikov [4] proved the existence of solutions of this form, obtained some properties, and

gave a number of examples. The description of the radial gas flow, i.e., the analysis of the invariant system of the
complete factor system was considered as one of the major problems of the further study of solutions of this type.
Investigation of the SV was continued in [6], where the special property of the Jacobian matrix of the SV velocity
field was proved and two invariant SV submodels, i.e., solutions possessing additional symmetry besides the rotation
group, were investigated. The SV is a meaningful class of physically interesting solutions, and its analysis is rather
complicated.

The present study is a continuation of analytical studies of the homogeneous singular vortex (HSV) — the
SV that possesses additional symmetry with respect to a certain dilatation group.

A determining property of the RPIS is that they can be described in terms of the solution of the key
equation for an auxiliary function — a peculiar analog of the solution potential [7]. All parameters of the solution
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Fig. 1. Representation of the velocity vector in the singular vortex.

are determined via this function and its derivatives. For the HSV, the key equation is the inhomogeneous Schwarz
equation (SE).

1. Singular Vortex Model [4]. To describe the SV model, we introduce spherical coordinates (r, θ, ϕ)
and use polar coordinates (H,ω) for the tangential velocity component uτ = (V,W ):

V = H cosω, W = H sinω. (1.1)

In (1.1), H = |uτ | =
√
V 2 +W 2 and ω is the angle formed by the vector uτ with the meridian (Fig. 1).

The SV is a regular partially invariant (2,1) type solution of the equations of gas dynamics (EGD) with the
following representation of the solution:

U = U(t, r), H = H(t, r),

ρ = ρ(t, r), p = p(t, r), ω = ω(t, r, θ, ϕ).
(1.2)

Here the invariant independent variables are r and t, the invariant functions are the thermodynamic variables ρ,
p, and S, the radial velocity component is denoted by U , and the modulus of the tangential component H. Th
superfluous function depending on all independent variables is the angle ω. In studying SV, it is assumed thatH 6≡ 0;
otherwise, the SV becomes the classical spherically symmetric solution.

According to the general scheme [5], for RPIS (1.2) the equations of gas dynamics split into two subsystems:
— the invariant subsystem

D0U + ρ−1pr = r−1H2,

D0(rH) = 0, D0S = 0, p = f(ρ, S),
(1.3)

where D0 = ∂t + U ∂r and the function f specifies the gas law);
— the overdetermined system for the superfluous function

k sin θD0ω + sin θ cosωωθ + sinωωϕ = − cos θ sinω,

sin θ sinωωθ − cosωωϕ = cos θ cosω + h sin θ,
(1.4)

in which the invariant functions

k = r/H, h = k(D0 ln ρ+ r−2(r2U)r) (1.5)

are introduced. The consistency relations for system (1.4) are described in terms of (1.5)

kD0h = h2 + 1 (1.6)

and complete the invariant subsystem (1.3) to a closed system.
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System (1.4) was integrated in closed form for solutions of system (1.3), (1.6) in [4]. Its general solution is
specified by the relation

F (ξ, η, ζ) = 0, (1.7)

where F is an arbitrary smooth function and ξ is an invariant Lagrangian variable

D0ξ = 0, (1.8)

the quantity η is given by

η = cos τ sin θ cosω − sin τ cos θ, (1.9)

and ζ is specified implicitly by the relation√
1− η2 sin (ζ + ϕ) = cos τ cos θ cosω + sin τ sin θ. (1.10)

The function τ is defined by the formula h = tan τ , so that kD0τ = 1. The primal problem is to study system
(1.3), (1.5), (1.6), which describes the radial gas flow.

The Jacobian matrix of the SV velocity field

J = (∇iu
j) (1.11)

calculated in spherical coordinates so that ∇i are covariant derivatives with respect to r, θ, and ϕ has algebraic
invariants and eigenvalues that depend only on the invariant variables t and r. From this it follows that the SV is
generated by special initial data for which the Jacobian matrix (1.11) calculated for t = 0 has algebraic invariants
and eigenvalues that depend only on r, while the initial velocity components V0 = V |t=0 and W0 = W |t=0 depend,
generally speaking, on all independent variables r, θ, and ϕ.

2. Homogeneous Singular Vortex [6]. The SV model admits a certain symmetry group. It is possible
to construct its invariant solutions under this group. We consider the invariant submodel generated by the algebra
L4 = 〈so(3),K〉, where the dilatation operator K has the form

K = r ∂r + U ∂U +H ∂H + αρ ∂ρ + (α+ 2)p ∂p (2.1)

with an arbitrary real parameter α. This algebra L4 specifies a (1,1) type RPIS, where the invariant independent
variable is time t. The corresponding submodel can be constructed by two methods: in one step, as the (1,1) type
RPIS of the equations of gas dynamics, or in two steps, considering the K-invariant submodel of the SV. The result
will be the same; in this case, the Lie–Ovsyannikov–Talyshev (LOT) lemma [8] on the equivalence of the multistep
and single-step algorithms for constructing the solutions is extended to the partially invariant solutions [6].

The representation L4 — the RPIS defined by (2.1) — has the form

U = A(t)r, H = C(t)r, ρ = rαR(t),

p = rα+2P (t), c2 = γr2B(t),
(2.2)

where c2 = γp/ρ is the squared velocity of sound. In (2.2), the functions A, B, C, P , and R are expressed in terms
of the auxiliary function h = h(t) (a peculiar potential of the solution) and its derivatives by the formulas

A = −1
2

(
ln

|h′|
1 + h2

)′
, B = B0(1 + h2)−γ |h′|(3γ−1)/2,

C = (1 + h2)−1h′, R = R0(1 + h2)−(α+2)/2|h′|(α+3)/2,

(2.3)

where γ > 1 is the adiabatic exponent, B0, R0 > 0 are constants, and B = R−1P .
The function h satisfies the inhomogeneous Schwarz equation

{h} ≡ h′′′

h′
− 3

2

(h′′
h′

)2

= β0
|h′|(3γ−1)/2

(1 + h2)γ
, (2.4)

where

β0 = 2(α+ 2)B0. (2.5)

Below, along with h, we use the function τ linked to the former by the relation

h = tan τ, τ = arctan h. (2.6)
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In terms of τ , the representation (2.3) takes the form

A = −τ ′′/(2τ ′), B = B0| cos τ |1−γ |τ ′|(3γ−1)/2,

C = τ ′, R = R0| cos τ |−1|τ ′|(α+3)/2.
(2.7)

The replacement (2.6) transforms the Schwarz equation (2.4) into a Schwarz equation with a converted right side:

{τ} = β0|τ ′|(3γ−1)/2/| cos τ |γ−1 − 2τ ′2. (2.8)

The algebraic invariants ki and the eigenvalues λi (i = 1, 2, 3) of the Jacobian matrix (1.11) of the HSV velocity
field depend only on time and are defined by the formulas

k1 = 3A− hC, k2 = 3A2 − 2hAC + C2, k3 = A3 − hA2C + C2A− hC3,

λ1 = A− hC, λ2,3 = A± iC.
(2.9)

It is interesting that according to (2.9), the matrix J has complex conjugate eigenvalues.
Thus, the investigation of the HSV reduces to studying the solution of the inhomogeneous SE (2.4). Below

(see Sec. 7) we give a number of cases where it can be effectively integrated but we first describe the kinematics of
HSV.

3. The HSV equations in Lagrangian coordinates. From formulas (2.2) for the HSV, it follows that

ρ−1∇p = (α+ 2)Bx. (3.1)

Substituting the representation (3.1) into the momentum equations of the EGD in a Lagrangian description, we
obtain the system of linear ordinary equations

d2x

dt2
+ q(t)x = 0 (3.2)

with the potential

q(t) = (α+ 2)B(t). (3.3)

System (3.2) is supplemented by the initial data

x
∣∣∣
t=0

= x0,
dx

dt

∣∣∣∣∣
t=0

= u0(x), (3.4)

which define the initial gas particle distribution and the velocity field (x0 are the Lagrangian coordinates of the gas
particles). From the special property of the Jacobian matrix J0 for the HSV described in Secs. 1 and 2, it follows
that its algebraic invariants and eigenvalues (2.9) at t = 0 are constants.

System (3.2) is supplemented by the continuity and energy equation, which hold by virtue of the represen-
tation of solution (2.2) and Eq. (2.4). Indeed, by virtue of (2.9), div u = k1(t) in these equations and they are
integrated resulting in the representation (2.2) [6].

Lemma 1. The kinematics of the HSV is described by a system of linear equations (3.2) with initial
data (3.4). The potential (3.3) and the thermodynamic parameters of the solution are defined by the representa-
tion (2.2) and Eq. (2.4).

We note that there is an analogy to the HSV in an ideal fluid [9].
4. Integral of Eqs. (3.2).
Lemma 2. System (3.2) has the integral

x× dx

dt
= M0, M0 = x0 × u0. (4.1)

The motion of each gas particle in the HSV occurs in the plane Π specified by the vector M0.
Proof. We calculate the derivative of the vector M0 by virtue of Eqs. (4.1)

dM0

dt
=

d

dt

(
x× dx

dt

)
=
dx

dt
× dx

dt
+ x× d2x

dt2
= −q(t)x× x = 0. (4.2)

There is an obvious analogy to the area integral in classical particle mechanics [10]. We point out that each particle
moves in its own plane and there is separation of the space of events into such planes.
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5. Reducing the Equations of Motion to the Ermakov Equation. The indicated analogy to classical
mechanics noted above can be further extended. However, in contrast to classical mechanics, gas dynamics provides
a description of an individual gas particle. Next, one needs a description of the coordinated motion of a continuous
medium consisting of an ensemble of such particles. In addition, the description of the solution does not reduce
only to system (2.2) — the thermodynamics of the medium is specified by the representation (2.3).

By rotation in the space R3(x), we reduce the plane Π of motion of the selected gas particle to the form
z = 0. Then, the integral (4.1) becomes

Π: z = 0, xy′ − yx′ = l0, (5.1)

where (x, y) are Cartesian coordinates in the plane Π and l0 = l0(x) is a function of Lagrangian coordinates.
We note that (4.1) has the form of (5.1) only for one selected particle of the gas.
In the plane Π, we convert to the polar coordinates

x = r cosψ, y = r sinψ. (5.2)

We note that r coincides with the quantity r =
√
x2 + y2 + z2 (invariance under rotation). Then, Eqs. (3.2) reduce

to the following equations:

r′′ − rψ′
2 + qr = 0, rψ′′ + 2r′ψ′ = 0. (5.3)

The second equation (5.3) is integrated resulting in

r2ψ′ = l0. (5.4)

This is an area integral from classical mechanics [10]. The substitution ψ′ from (5.4) into the first equation (5.3)
results in the Ermakov equation [11]

r′′ + q(t)r = l20/r
3 (5.5)

with the potential (3.3).
Lemma 3. The kinematics of the HSV in the plane of motion of the gas particle specified by the equation

z = 0 is described by Eqs. (5.4) and (5.5).
This result is a direct consequence of the mechanical analogy. The following statement is less obvious.
Lemma 4. The system of equations (5.4) and (5.5) is equivalent to the Schwarz equation (2.8).
Proof. We express r from (5.4). We have (assuming that l0 > 0 and ψ′ > 0)

r =
√
l0 (ψ′)−1/2, r′ = −

√
l0 (ψ′)−3/2ψ′′/2,

r′′ = −
√
l0

(
(ψ′)−3/2ψ′′′ − 3(ψ′)−5/2ψ′′

2
/2

)
/2.

(5.6)

Substituting r′′ from (5.6) and r from (5.4) into (5.5) and simplifying the result, we obtain

{ψ} = 2q(t)− 2ψ′2. (5.7)

Comparing formula (3.3) for q(t) and the representation (2.7) for B(t), we arrive at the SE (2.8) for the function ψ.
Corollary 1. The auxiliary function τ defined by formula (2.6) has the following physical meaning: it

coincides with the polar angle that describes the motion of the gas particle in the plane z = 0.
This leads to the following important conclusion. The Schwarz equation (2.8) directly describes the kine-

matics of the gas particle.
To describe the motion of the gas in the HSV, one needs to know how to integrate the SE (2.8). This problem

has been little studied [12, 13]; we give some new results (see Sec. 7).
6. Trajectory Equations. We integrate the equations of trajectories in the HSV for gas flows in which

ωϕ = 0. Then, only the first of integrals (1.9), (1.10) remains. The general solution (1.7) becomes

cosω =
F (ξ)

cos τ sin θ
+ tan τ cot θ, (6.1)

where ξ = r2τ ′ is the Lagrangian coordinate (1.8) in the HSV and F is an arbitrary function. The trajectory
equations have the form

dr

dt
= −1

2
(ln τ ′)′r,

dθ

dt
= τ ′ cosω,

dϕ

dt
=
τ ′ sinω
sin θ

. (6.2)
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The first equation (6.2) specifies the area integral (3.4) or, in other terms, the representation for the Lagrangian
coordinate ξ. Substituting expression (6.1) into the second equation (6.2), we obtain the following linear equation
for ψ = cos θ:

dψ

dτ
+ ψ tan τ +

F

cos τ
= 0.

The general solution of this equation can be written as

cos θ = A0 cos δ,

δ = τ + α0, A0 =
√
k2
0 + F 2, α0 = arctan (F/k0),

(6.3)

where k0 is the integration constant. From (6.3) follows the inequality

0 6 A0 6 1.

Rewriting the third equation (6.2) as

dϕ =
sinω
sin θ

dτ

and substituting into it the value

sinω =
√

1−A2
0/ sin θ,

obtained from (6.1) taking into account (6.3), we arrive at the integral

ϕ =
√

1−A2
0

∫
dτ

sin2 θ
=

√
1−A2

0

∫
dδ

1−A2
0 cos2 δ

,

which is taken in the form

ϕ = arctan
(

tan δ/
√

1−A2
0

)
. (6.4)

Using the representations of Cartesian coordinates in terms of spherical coordinates, it is possible to simplify the
expressions of cosϕ and sinϕ for the angle ϕ defined by (6.4). The final formulas are written as

x = r
√

1−A2
0 cos2 δ

( 1−A2
0

1−A2
0 + tan 2 δ

)1/2

, y = r
√

1−A2
0 cos2 δ

tan δ
(1−A2

0 + tg2δ)1/2
,

z = rA0 cos δ, δ = τ + α0, 0 6 A0 6 1. (6.5)

The function τ = τ(t) is a solution of the SE (2.8).
7. Integration of the SE for Particular Values of γ. We consider an isothermal gas for which γ = 1.

In this case, p = Sρ and the velocity of sound c2 = S is conserved along the trajectory. Equation (2.8) becomes

{τ} = β0τ
′ − 2τ ′2, (7.1)

where β0 is specified by formula (2.5). We designate τ ′ = X; then the numerator of the left side (7.1) is represented
as

2XX ′′ − 3X ′2 =
X4

X ′

(X ′2

X3

)′
.

Equation (7.1) is brought to the form (X ′2

X3

)′
=

2X ′

X
(β0 − 2X)

and is integrated once. The result is the key equation for X = X(t):

X ′2 = X3(β0 lnX2 − 4X + C) (7.2)

(C is an arbitrary constant).
Let γ = 4/3. Then, Eq. (2.4) becomes

2h′h′′′ − 3h′′2

2h′2
=

β0|h′|3/2

(1 + h2)4/3
. (7.3)
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The order of Eq. (7.3) is reduced by introducing a new function X = X(h), so that h′ = X(h) (below, in Sec. 7 a
prime denotes differentiation with respect to h). Substitution of X into (7.3) yields

2XX ′′ −X ′2 = 2β0|X|3/2/(1 + h2)4/3. (7.4)

The left side of Eq. (7.4) is brought to the form

X2

X ′

(X ′2

X

)′
= 2β0

|X|3/2

(1 + h2)4/3
. (7.5)

Introducing the new function

Z = X ′/
√
|X| (7.6)

we rewrite Eq. (7.5) as

(Z2)′ = 2β0Z/(1 + h2)4/3. (7.7)

After elimination of the derivative on the left side and simplifications, the above equation is brought to the form

dZ

dh
=

β0

(1 + h2)4/3

and is integrated twice. The first integration of (7.7) leads to the equation

Z = β0(Φ1(h) + C1), (7.8)

where (Φ1)′h = (1 + h2)−4/3 and C1 is the integration constant. According to (7.6), we have

Z = 2
d

dh

√
|X|. (7.9)

Hence, it is possible to integrate (7.8) once more. Taking into account (7.9), we obtain√
|X| = β0(Φ2(h) + C1h+ C2)/2, (7.10)

where (Φ2)′h = Φ1 and C2 is the integration constant. To eliminate the radical and the sign of the modulus, we
raise (7.10) to the fourth power. The result is the key equation(dh

dt

)2

= α4
0(Φ2(h) + C1h+ C2)4, α0 =

β0

2
. (7.11)

The functions Φ1 and Φ2 are represented in terms of the hypergeometric Gauss function 2F1(a, b; c;x) [14] by the
following formulas:

Φ1(h) =
∫

dh

(1 + h2)4/3
=

3h
2(1 + h2)1/3

− 1
2
hΦ(h),

Φ2(h) = (−3 + 12(1 + h2)2/3 − 4h2Φ(h))/8.

Here Φ(h) = 2F1(1/2, 1/3; 2/3;−h2).
Let γ = 5/3. A qualitative description of the gas flow in the HSV for this case is given in [6], where it is

shown that the SE (2.4) splits into a first-order nonlinear ordinary differential equation and a second-order linear
equation. The procedure of reducing the SE to the pair of equations described above can be simplified as follows.

Equation (2.4) is autonomous; the substitution h′ = X(h) reduces its order:

2XX ′′ −X ′2 = 2β0X
2/(1 + h2)5/3. (7.12)

Another substitution

|X| = Z2 (7.13)

reduces Eq. (7.12) to a second-order linear equation for the function Z = Z(h):

d2Z

dh2
− β0Z

2(1 + h2)5/3
= 0. (7.14)

To eliminate the modulus sign in relation (7.13), we raise it to the square:

h′
2 = Z4(h). (7.15)
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Fig. 2. Plot of the function f(X) (β0 = 2.8 and C = 3.8).

Thus, the SE (2.4) is equivalent to the following pair of equations: the second-order linear equation (7.14) and the
first-order equation (7.15).

Naturally, the question arises of the relationship between the integrability of the SE (2.4) [or (2.8)] for
the particular values of the exponent γ listed above and the existence of a nontrivial symmetry group of the this
equation. This problem was studied by Cherevko, who proved that the SE (2.4) for γ = 1 and 5/3 admits a
nontrivial group of tangential transformations. This group is responsible for the integration procedures described
above. However, for γ = 4/3, no extension of the symmetry group of Eq. (2.4) was revealed and the nature of
integration in this case remains unclear.

8. Analysis of Isothermal Motions of Gas (γ = 1). In the isothermal case, as can be seen from Sec. 7,
the key equation (7.2), to which the SE (2.8) is reduced, has an especially simple form. However, the analysis of
the motion is not trivial. There is an analogy between the solution obtained and the well-known periodic Sedov
solution with a linear velocity field in the presence of a singularity [1]. The analysis of the solution is based on
Ovsyannikov’s theory of periodic gas motions [15].

In the HSV with γ = 1, a periodic kinematic configuration can exist in the plane specified by the initial data.
However, the representation (2.7) implies the presence of a singularity in the solution — a density collapse. From
a physical point of view, it makes sense to consider the solution on intervals that do not contain singular points.

The key equation (7.2) describing isothermal gas motions is written as

X ′2 = f(X), (8.1)
where

f(X) = X3Φ(X), Φ(X) = β0 lnX2 − 4X + C. (8.2)

The function f(X) is plotted in Fig. 2. The plot has a cap generated by the roots X1 and X2 of the equation
Φ(X) = 0. Generally, it takes place if the following conditions are satisfied:

(a) X1 and X2 exit such that f(X1) = f(X2) = 0;
(b) f ′(X1) > 0, f ′(X2) < 0;
(c) the function f(X) has a maximum at the point X∗ ∈ (X1, X2), i.e., f ′(X∗) = 0 and f ′′(X∗) < 0.
These conditions, in turn, are ensured by the sufficient conditions of existence of the cap [8]. That is, if the

function f depends also on a parameter λ : f = f(X,λ) (in our case, this can be both C and β0) and there exists a
point M(X0, λ0) at which f(M) = 0 and fX(M) = 0 (condition 1) and f ′λ(M) > 0 and fXX(M) < 0 (condition 2);
then the cap exists for λ > λ0, where λ is rather close to λ0.

The presence of the cap on the plot guarantees the existence of a periodic solution of Eq. (8.1) [15].
Let us proof that conditions 1 and 2 are satisfied for a function f of the form (8.2). From condition 1 we

have

X0 = β0/2, C0 = 2β0(1 + ln 2− lnβ0). (8.3)

Next, using (8.3), we obtain

f ′C(M) = X3
0 = β3

0/8, fXX(M) = −2β0/X
2
0 = −8/β0. (8.4)

Lemma 5. The sufficient conditions for the existence of the cap of the function (8.2) are satisfied if

β0 > 0 and C0 = 2β0(1 + ln 2/β0). (8.5)
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Fig. 3. Diagram of generation of the limiting period (β0 = 2).

According to [15], if conditions 1 and 2 are satisfied, Eq. (8.1) has a periodic solution X = X(t) with the
period

Π = 2

X2∫
X1

dX√
f(X)

. (8.6)

The formulas describing the asymptotic representation of the solution and the period, have the form

Xε(t) = X0 − a cos bt+O(ε2); (8.7)

Πε = 2π/b+O(ε). (8.8)

Here ε = λ − λ0 is a small parameter and the values of a and b are calculated from the value of the function f at
the point M specified by conditions 1 and 2:

a2 = 2fλ(M)/|fXX(M)|, 2b2 = |fXX(M)|. (8.9)

Substituting the values from (8.4) into (8.9), we obtain

a = β2
0/4

√
2, b = 2/

√
β0. (8.10)

Then, the limiting period calculated from (8.8) in accordance with (8.10) is equal to

Π = π
√
β0.

The situation with the limiting period is illustrated by the following reasoning. Let us consider Fig. 3, which shows
the curve Γ (a plot of the function Y = 2β0 lnX) and the straight lines Y = 4X −C for two different values of the
parameter C.

The straight line L0 is tangent to the curve Γ at the point A and the straight line L1 intersects it at the
points A1 and A2. The projections of the points Ai onto the axis X specify the values of Xi that are the solutions
of the equation f(X) = 0 defining the cap. Hence, in the limit, as the secant approaches the tangent L1 → L0 and
as Ai → A, we obtain the limiting periodic motion with the period Π.

Numerical calculation of the dependence of the period Π on the parameter C shows that the function
Π = Π(C) increases monotonically, almost exponentially. Figure 4 gives a plot of this dependence for small C.

9. Equivalence Transformation of Eq. (8.1). Equation (8.1) admits the equivalence transformation

X = aX̄, t = t̄/a, (9.1)

under which the constants β0 and C are transformed as follows:

β̄0 = β0/a, C̄ = (C + β0 ln a2)/a. (9.2)
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Fig. 5. Plot of X = X(t) for various values of C (β0 = 2).

Therefore, it suffices to study the dependence of the trajectory X = X(t) only on one of the parameters (β0 or C)
because by the transformation (9.1), according to formulas (9.2), it is possible to fix one of them. It is convenient
to set β0 = 2 and to use the dependence of the solution only on C. This will be done below.

10. Closure of the Trajectory of the Solution X = X(t). We consider the solution X = X(t) in the
plane Π : z = 0, so that we can apply Lemma 4 and its corollary: Eq. (8.1) describes the kinematics of the gas
particle. We introduce polar coordinates (r, ψ) in the plane Π; then the trajectory is defined by the following three
relations:

X2
t = X3(β0 lnX2 − (4X − C)); (10.1)

r2X = r20X0; (10.2)

ψt = X(t). (10.3)

Lemma 6. The integral curves corresponding to solutions (10.1)–(10.3) are located in the ring r ∈ [r1, r2].
Proof. Since X ∈ [X1, X2], then, according to the integral (10.2), r varies in the closed interval [r1, r2].
Figure 5 shows plots of the solution X = X(t) for various values of the parameter C (the solid curve refers

to C = 7.0 and the dotted curve to C = 4.7). As C increases, the value of X1 decreases to zero and X2 increases
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Fig. 6. Trajectories for q = 2/3 (a) and 5/8 (b).

without limit. In this case, the maximum of the function f(X) increases; i.e., as t increases, the function X(t) first
increases and then decreases faster, which leads to sharpening and narrowing of the upward-directed peaks of the
function X(t).

The function ψ = ψ(t), according to (10.3), has the form of a stepped curve. The quantity

Ψ =

t2∫
t1

X(t) dt (10.4)

defines the increase in the angle ψ in the time Π = t2 − t1 equal to the period X(t). We note that the quantity Ψ
is invariant under the equivalence transformation (9.1). For the existence of periodic solutions X = X(t), it is
necessary that the particle trajectory to be closed, possibly after several rotations around the center. Hence, the
existence condition for the closed trajectories is given by

Ψ = 2πq, q = n/m ∈ Q. (10.5)

The number of rotations is specified by the numerator of the ratio n. The denominator m specifies the number of
points at which the trajectory enters the external (internal) limiting circle (Lemma 6), i.e., it specifies the number
of “lobes” on the trajectory. Numerical calculation shows that the quantity Ψ = Ψ(C) is bounded from above and
from below, at least, on a certain interval

π 6 Ψ 6 π
√

2. (10.6)

The estimate (10.6) defines the possible choice of the parameter C and, hence, the number q ∈ Q in (10.5). Figure 6
shows the trajectories for two different values of q. On the dashed lines, according to (2.7), there is a density
collapse for certain initial data.

For the trajectory configuration presented in Fig. 6a, Fig. 7 gives plots of the variations of the radius (solid
curve), density (dashed curve), the radial gas particle velocity (dot-and-dashed curve), and the circular gas particle
velocity (dotted curve) calculated according to formulas (2.2) and (2.3) and Eq. (8.1).

According to Lemma 2, each particle moves in its own plane. For two particles and q = 2/3, the possible
spatial trajectory configuration is presented in Fig. 8.

11. Gas Jet Regime. The solution of the key equation (8.1) on the interval X ∈ [X3, X4 = 0] (see Fig. 2)
generates motion of the type of a gas jet. The equation f(X) = 0 has the root X4 = 0 of multiplicity three; hence,
according to the solution of Eq. (8.1)

t = ±
X0∫

X3

dξ√
f(ξ)

, X → X4, (11.1)
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case q = 2/3.

Fig. 8. Spatial trajectory configuration for two particles in the case q = 2/3.

the transition from the state X3 to X4 is performed for infinite time. Indeed, the improper integral on the right
side of Eq. (11.1) is divergent and has a singularity of the form ξ−3/2 at the point X4 as ξ → 0. Physically, this
solution corresponds to the transition of the gas particle from the state with a finite X3 = ψ′3 to the state with
X4 = ψ′4 = 0, so that, according to the integral (10.2), we have: ψ4 → ψ40 = const and r4 → ∞. The solution
models the gas jet flowing to infinity or, vice versa, its arrival from infinity.
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